Mandelbrot convergence counts
Usage
mandelbrot(...)
# S3 method for class 'matrix'
mandelbrot(Z, maxIter = 200L, tau = 2, ...)
# S3 method for class 'numeric'
mandelbrot(
xmid = -0.75,
ymid = 0,
side = 3,
resolution = 400L,
maxIter = 200L,
tau = 2,
...
)
Arguments
- Z
A complex matrix for which convergence counts should be calculated.
- maxIter
Maximum number of iterations per bin.
- tau
A threshold; the radius when calling divergence (Mod(z) > tau).
- xmid, ymid, side, resolution
Alternative specification of the complex plane
Z
, wheremean(Re(Z)) == xmid
,mean(Im(Z)) == ymid
,diff(range(Re(Z))) == side
,diff(range(Im(Z))) == side
, anddim(Z) == c(resolution, resolution)
.
Author
The internal Mandelbrot algorithm was inspired by and adopted from similar GPL code of Martin Maechler available from ftp://stat.ethz.ch/U/maechler/R/ on 2005-02-18 (sic!).
Examples
counts <- mandelbrot(xmid = -0.75, ymid = 0, side = 3)
str(counts)
#> 'Mandelbrot' int [1:400, 1:400] 1 1 1 1 1 1 1 1 1 1 ...
#> - attr(*, "params")=List of 3
#> ..$ Z : cplx [1:400, 1:400] -2.25-1.5i -2.25-1.49i -2.25-1.48i ...
#> ..$ maxIter: int 200
#> ..$ tau : num 2
if (FALSE) { # \dontrun{
plot(counts)
} # }
if (FALSE) { # \dontrun{
demo("mandelbrot", package = "future", ask = FALSE)
} # }